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Invariants and Chaotic Maps

W.-H. Steeb'? and M. A. van Wyk!
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A one-dimensional map f(x) is called an invariant of a two-dimensional map
g(x, y) if g(x, f(x)) = f(f(x)). The logistic map is an invariant of a class of two-
dimensional maps. We construct a class of two-dimensional maps which admit
the logistic maps as their invaniant. Moreover, we calculate their Lyapunov
exponents. We show that the two-dimensional map can show hyperchaotic
behavior.

The logistic equation

xt+!=2x12—13 r=0,1,2,..., xpe[—11] 1N
is the most studied equation with chaotic behavior (Steeb, 1992, 1993, 1994).
All quantities of interest in chaotic dynamics can be calculated exactly.
Examples are the fixed points and their stability, the periodic orbits and their
stability, the moments, the invariant density, the topological entropy, the
metric entropy, the Lyapunov exponent, and the autocorrelation function. The
exact solution of (1) takes the form

x, = cos(2" arccos(xp)) 2)
since cos(2a) = 2 cos*(a) — 1. The Lyapunov exponent for almost all initial

conditions is given by In(2). The logistic equation is an invariant of a class
of second-order difference equations

Xi+2 = g(xn X,H), r=20,12,... 3)

This means that if (1) is satisfied for a pair (x,, x,;), then (3) implies that
(X.1» X4o) also satisfies (1). In other words, let

Xt = f(x), r=0,1,2,... 4)
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be a first-order difference equation. Then (4) is called an invariant of (3) if

g(x, f()) = f(f(x)) (3)

The second-order difference equation (3) can be written as a first-order system
of difference equations (x,, = x,)

X+t = Xays Xov1 = 80X, X2,) (6)

If xo and x, are the initial conditions of (3) (x5, x; € [—1, 1]) and assuming
that (1) is an invariant of (3) as well as that x; and x; satisfy the logistic
equation, then a one-dimensional Lyapunov exponent of (6) is given by In(2).
Since system (6) is two-dimensional, we have a second one-dimensional
Lyapunov exponent and a two-dimensional Lyapunov exponent. Let A} and
A\ be the two one-dimensional Lyapunov exponents. Let A! be the two-
dimensional Lyapunov exponent. Then we have

A=\ + A} @

Let us find the two-dimensional Lyapunov exponent. Consider the system
of first-order difference equations

Xier = [ilXi, X200, Xav1 = o0 X2) 8

The variational equation is given by {x, = (x(,, Xx2,)]

9f; of;
Viev1 = 3 (X,)yl,, + ! (x/),V?..l
axl ax,

9f; f
Ya+1 & =2 (X)yis 7 (X)y2, C)]
ax, ax;,

Let y, and v, be two quantities satisfying the variational equation (9). Let e,
and e, be two unit vectors in R? with e, e, = 0, where the dot denotes the
scalar product. Let A be the exterior product {Grassmann product (Steeb,
1993, 1994)]. Then we find

yAv = (}’1.:"2,1 - }’2.1"1,1)61 A€ (10)
Now we define
W i= YigVor = YV (11

Thus the time evolution of w, is given by

Wi = (g'fi (x) g}, (x,) = if'l' (x) '% (xl))wl
X ax, Xy 1

12
X, ax ( )
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The two-dimensional Lyapunov exponent is given by

1
AT = lim ilnlwrl (13)

T—o>

Obviously, A, A}, and \y; depend on the initial conditions of (8). If fi(x}, x,)
= x, and fo(x;, x2) = g(x|, xp) as in (6), we obtain from (12) that

d
Wit = ——2 (x)w, (14)
8X1

Without loss of generality we can set wy = 1.

We derive now a class of second-order difference equation with the
logistic map as an invariant. Our ansatz for g(x;, x,) with f(x) = 2% — 1is
given by

glxi, X)) = apx, + agxa + ayxt + apnxixn +apxs +d - (15)
Satisfying the condition (5) yields
8(x, X) = x, — 26 + 25 + d(l + x, — 2x}) (16)

Since
9% gxd+ 1) (17
ax,

we find that (14) takes the form
Wi = —4xl,l(d + l)wl (18)

Let us now calculate the two-dimensional Lyapunov exponent A!'. The initial
values x, g, Xz of the two-dimensional map x;,+| = X2, X3,41 = &(X1 X2,
satisfy the logistic map in our following calculations. Using (2), (18), and
(19), we obtain

N(0g) = ;ﬂ%ln(ﬁ[‘ 41d + 11- lcos(2’90)l> (19)
d#* —1, 0, := arccos(xg)
or
M6 =21In2 + Inid + 11 + y(8g) 20)

where

T
v(8p) = lim 1 Y Inlcos(26y) | 1)
T—x T =1
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Now, since
c0s(29y) = cos(2'8y mod 2) 22)
we only need to study the Bernoulli shift map
0., =20, mod2w 23)
This map has the solution
0, =29, mod2m (24)

The map (23) is ergodic with the invariant density
]
p(®) = 5 Xio2n () (25)
u

where Y is the characteristic function. Thus we may apply Birkhoff’s ergodic
theorem (Steeb, 1992). This then gives

2w

v(8p) = j p(8) Inicos 01 dO
0

= L[ Inicos 61 d6
2

= p Lﬂlz In{cos 0) do (26)
It follows that
v(8g) = —In 2 for a.e. 85 € [0, 2m) @7
Thus
AN'=1In2 + Inid + 11, d#+ —1 (28)

Now, since one of the one-dimensional Lyapunov exponent is In 2, and
A=A+ A, A=A} (29)
we find the two one-dimensional Lyapunov exponent as
Y
it

max{ln 2, Inid + 11} (30)
min{ln 2, Inld + 11} 30

Obviously A can be made arbitrarily large positive or negative by appropriate
choice of d. This implies that the spectrum of the one-dimensional Lyapunov
exponents may be (+, —), (+, 0), or (+, +). Thus hyperchaos can occur.
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Now, let {x,(x,)} denote the orbit originating from x, for the logistic map
(1). Then

{xn(x5)} is chaotic < arccos(xg) € R\D (32)

This follows from the fact that the orbit of the Bernoulli shift map is chaotic
if and only if 8, € R\
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